# 深度学习在绝缘子红外图像异常诊断的应用

范 鹏<sup>1,2</sup>, 冯万兴<sup>1,2</sup>, 周自强<sup>1,2</sup>, 赵 淳<sup>1,2</sup>, 周 盛<sup>1,2</sup>, 姚翔字<sup>1,2</sup>
(1. 南瑞集团 (国网电力科学研究院) 有限公司, 江苏 南京 211106;
2. 国网电力科学研究院武汉南瑞有限责任公司, 湖北 武汉 430074)

**摘要:** 绝缘子的红外图像分析一般采用图像处理的方法,易受背景环境和数据量的影响,准确率和效率均较低,本文提出一种深度学习的异常诊断方法,基于改进的 Faster R-CNN 方法搭建检测网络, 开展不同类型的绝缘子测试。研究结果表明:相对于神经网络(Back Propagation, BP)、Faster R-CNN 方法,本文方法可高效地诊断出绝缘子的异常缺陷,平均检测精度达到 90.2%;单 I 型和 V 型绝缘子 的异常诊断准确率高于双 I 型绝缘子。研究结果可为输电线路绝缘子异常诊断提供一定的参考。 关键词: 绝缘子;异常诊断;深度学习;Faster R-CNN;平均检测精度;红外图谱 中图分类号:TN219 文献标识码:A 文章编号:1001-8891(2021)01-0051-05

## Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis

FAN Peng<sup>1,2</sup>, FENG Wanxing<sup>1,2</sup>, ZHOU Ziqiang<sup>1,2</sup>, ZHAO Chun<sup>1,2</sup>, ZHOU Sheng<sup>1,2</sup>, YAO Xiangyu<sup>1,2</sup> (1. NARI Group (State Grid Electric Power Research Institute) Co., Ltd., Nanjing 211106, China; 2. Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 430074, China)

**Abstract**: Because of the effects of the background environment and data volume, the accuracy and efficiency of abnormal defects in traditional infrared images of insulators are generally low. In this study, a deep-learning anomaly diagnosis method is proposed. Based on the improved faster region-based convolutional neural network (R-CNN) method, a detection network is built to test different types of insulators. Results show that compared with the back propagation neural network and faster R-CNN methods, the proposed method can diagnose abnormal defects of insulators efficiently with a mean average precision of 90.2%. In addition, the diagnostic accuracy of single type I and type V insulators is higher than that of double type I insulators. The results can provide a reference for insulator defect identification in transmission lines.

Key words: insulator, abnormal diagnosis, deep learning, Faster R-CNN, mAP, infrared image

### 0 引言

红外成像具有非接触直接测量输变电设备状态的特征,无需停电,在电力领域具有广泛的应用<sup>[1-3]</sup>。 输变电设备在野外严峻环境中长期运行,由于材料老 化、污秽闪络、机械受损等因素,常伴随有局部放电、 温度增高等现象。绝缘子作为输电线路重要部件,起 到电气隔离和机械支撑的作用,当红外图像显示的温 度较高,表明其有异常缺陷,这是因为场强不均匀发 生局部放电,严重时可能导致线路故障,甚至造成停 电故障。文献[4-5]开展了变压器高压套管的红外诊断 研究,通过热像特征谱图分析了故障原因。红外图像 可应用于交流滤波器的故障分析中,提取其跳闸的典 型故障特征<sup>[6-8]</sup>。

输变电设备红外图谱特征提取主要为图像处理 方法,诸如纹理、色彩、边框等图像特征<sup>[9-10]</sup>。随着 无人机航拍技术的发展,输变电设备红外图谱呈现爆 发式增长,深度学习提供了一种良好的手段<sup>[11-13]</sup>,采 用卷积神经网络(Convolutional Neural Networks, CNN)的方法,对海量图片进行训练学习,提取特征 进行测试和验证。CNN 通过卷积层计算,输入较深层 的特征图,对于小目标绝缘子、套管,权重值相对较

收稿日期: 2020-03-08; 修订日期: 2020-11-22.

作者简介:范鹏(1986-),男,硕士,高级工程师,主要从事电网智能运检、电力物联网与人工智能方面的技术研究工作。E-mail: fanpeng2@sgepri.sgcc.com.cn。 基金项目: 国网电力科学研究院有限公司科技项目(524625190054)。

少,无法实现小目标的有效提取<sup>[14-15]</sup>。针对这一缺点, 本文对 Faster R-CNN 方法进行改进,提高绝缘子红外 图谱诊断的精度。

### 1 改进的 Faster R-CNN 方法

### 1.1 Faster R-CNN 原理

区别于普通的 CNN, Faster R-CNN 增加了一个 区域提取网络(Region Proposal Network, RPN),即 图1中的候选区域,摒弃传统的滑动窗口,可在 GPU 直接运行计算,极大地加快了计算速度。RPN 判断每 个像素点对应的多个不同尺度和宽高比的锚框是否 为前景目标的二分类,形成候选区域。





#### Fig.1 Algorithm flow of Faster R-CNN

Faster R-CNN 一般采用随机梯度下降法 (Stochastic Gradient Descent, SGD)训练神经网络, 见式(1):

$$h(x) = \sum_{i=0}^{n} w_i x_i = \boldsymbol{W}^{\mathrm{T}} \boldsymbol{X}$$
(1)

式中: **X** 为输入; **W** 为权重; w<sub>i</sub>、x<sub>i</sub>分别表示第 i 个 权重和输入; h(x)为对应的输出。

损失函数 S(W)基于平方误差实现,见式(2):

$$S(W) = \frac{1}{2} \sum_{i=0}^{m} (h_W(x_i) - y_i)^2$$
(2)

式中: y<sub>i</sub>为真实输出。

W的更新函数见式(3):

$$W_{j} = W_{j} - \alpha \frac{\partial}{\partial W_{j}} S(W)$$
(3)

式中: α为学习率,可设置步长。W 通过梯度下降法 进行求解,首先正向计算样本输出值,接着根据反向 传递的误差迭代计算,常用在 CNN 训练中。

**RPN** 的选择本质是通过平移或者尺度变化的方法将合适的区域提取网络 *R* 变成*Ĉ*,从而接近实际的

候选框 C:

$$f(\boldsymbol{R}_{x},\boldsymbol{R}_{y},\boldsymbol{R}_{w},\boldsymbol{R}_{h}) = \left(\hat{\boldsymbol{C}}_{x},\hat{\boldsymbol{C}}_{y},\hat{\boldsymbol{C}}_{w},\hat{\boldsymbol{C}}_{h}\right) \approx \left(\boldsymbol{C}_{x},\boldsymbol{C}_{y},\boldsymbol{C}_{w},\boldsymbol{C}_{h}\right)(4)$$

式中: (*x*, *y*)、(*w*, *h*)分别为矩形区域的中心坐标和宽、高。

令t<sub>\*</sub>为矩形区域的平移和缩放量,则有:

$$\begin{cases} t_{x} = (C_{x} - R_{x}) / R_{w} \\ t_{y} = (C_{y} - R_{y}) / R_{h} \\ t_{w} = \lg(C_{w} / R_{w}) \\ t_{h} = \lg(C_{h} / R_{h}) \end{cases}$$
(5)

式中: *t<sub>x</sub>、t<sub>y</sub>*为矩形区域的中心坐标平移量; *t<sub>w</sub>、t<sub>h</sub>*分别为矩形区域的宽、高的缩放量。

预测值计算过程为:

$$d_*(R) = w_*^{\mathrm{T}} \phi(R) \tag{6}$$

式中: *p*是最后一次卷积计算。

损失函数的目标值计算见式(7),通过调整平移和 缩放的尺度,确定最终的候选区域<sup>[16]</sup>:

$$L_{\rm oss} = \sum_{i=1}^{N} (t_*^i - w_*^{\rm T} \phi(C^i))^2$$
(7)

#### 1.2 压缩激励结构

为了增强 Faster R-CNN 的小目标特征提取能力, 引入压缩激励结构,即压缩和激励两大操作,设图像 的特征参数设置为(*H*, *W*, *K*),分别表示为长、宽和通 道数。

压缩操作 *F*<sub>sq</sub>(·)基于各个通道实现特征图空间信息的压缩,见式(8):

$$h_{c} = F_{sq}(k_{c}) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} k_{c}(i, j)$$
(8)

式中: *k<sub>c</sub>*表示第 *c* 个通道; *h<sub>c</sub>*表示经过压缩后输出向量 *h* 的第 *c* 个元素。

激励操作分为激励  $F_{ex}(\cdot)$ 和校准  $F_{scale}(\cdot)$ 两个过程, 分别见式(9)和式(10):

 $s = F_{\text{ex}}(h, w) = \sigma(g(z, w)) = \sigma(w_2 \delta(w_1 z))$ (9)

式中:  $\sigma$ 是 sigmoid 激活函数;  $w_1 \stackrel{c}{\rightarrow} \stackrel{c}{r} \times \stackrel{c}{C}$ 的实数矩阵, 表示通道的缩减, r 为缩减因子;  $\delta$ 是 ReLU 激活函数,  $w_2 \stackrel{c}{\rightarrow} \stackrel{c}{\sim}$ 的实数矩阵,表示通道的恢复。

$$\tilde{h}_c = F_{\text{scale}}(h_c, s_c) = s_c . h_c \tag{10}$$

式中: $s_c$ 表示激活向量s的第c个元素; $\tilde{h}_c$ 表示校准 后的对应元素。

### 2 绝缘子红外图像的深度学习

#### 2.1 环境搭建

本文基于改进的 Faster R-CNN 方法, 对平台的环

境搭建要求较高,具体配置见表 1。操作系统为开源 Linux,数据库为 MySQL;硬件配置较高,CPU 采用 Intel 高端系列,内存和硬盘容量均较大,保证大量数 据的高效运算。框架采用 2018 年初公开的目标检测 平台 Detectron,包含最具代表性的目标检测、图像分 割、关键点检测算法。

表1 软硬件配置

| Table 1         Hardware and software configuration |                             |  |  |
|-----------------------------------------------------|-----------------------------|--|--|
| Name                                                | Model                       |  |  |
| Operating system                                    | Ubuntu 16.04.1              |  |  |
| Database                                            | mysql 5.5.20                |  |  |
| CPU                                                 | Intel Xeon Silver 4114T 12C |  |  |
| GPU                                                 | NVIDIA GTX1080Ti            |  |  |
| Memory                                              | 32 G                        |  |  |
| Hard disk                                           | 1 T                         |  |  |
| Frame                                               | Detectron                   |  |  |
|                                                     |                             |  |  |

### 2.2 数据准备

图像数据来源于多条输电线路无人机拍摄的大量绝缘子照片。在神经网络的训练过程中,对正负样本的判定见图 2,主要基于锚框映射图与真实目标框的交并比(Intersection over Union, IoU)来进行计算分类。首先对 RPN 形成的锚框进行排序筛选形成锚框序列,接着利用边框回归参数向量修正锚框的位置形成候选区域集合,然后计算所有感兴趣区域(Region of Interest, RoI)与真实目标框的 IoU,求最大值,并判断其是否大于 0.5,若满足,则为正样本,否则为负样本。





完成正负样本的判定后,为了使样本的采样尽量 均衡,保证双方的训练集和验证集数量一致,同时采 用迁移学习的方法,经过相关修正与补偿,扩充样本 总量至2375,样本信息配置见表2。

#### 表 2 样本配置信息

| T-1-1- 0 | T           | -f1-           | f: + :        |  |
|----------|-------------|----------------|---------------|--|
| ranie z  | Information | of sample      | configuration |  |
| I GOIC D | momun       | or building ic | comigaration  |  |

| sample type | training set | verification set | test set | total |
|-------------|--------------|------------------|----------|-------|
| positive    | 500          | 250              | 750      | 1500  |
| negative    | 500          | 250              | 125      | 875   |
| total       | 1000         | 500              | 875      | 2375  |

#### 2.3 改进模型的建立

普通的 CNN 方法,原始图像经过卷积层和池化 层后,全链接层输出结果,本文方法的结构如图 3 所 示,引入压缩激励的过程,压缩特征图的空间信息, 并通过激励操作学习通道间的依赖关系,可自适应分 配每个通道的权重值,提取有利于任务的重要特征通 道,最终能进一步增强网络模型的特征提取能力,采 用 SE-DenseNet-169 框架的 Faster R-CNN 模型。

改进模型主要完成绝缘子异常状态的精准识别, 首先对红外原始图像进行相关修正与补偿实现样本 扩充,然后采用本文方法进行训练,收敛后,获得最 终的改进 Faster R-CNN 模型。



图 3 改进的 Faster R-CNN 结构 Fig.3 Structure of improved Faster R-CNN

### 3 实验分析

#### 3.1 精确度衡量

CNN 学习中,精确度的衡量一般会采用准确率 (Precision)和召回率(Recall),其计算过程分别见 式(11)和式(12):

$$P_{\rm re} = \frac{\rm TP}{\rm TP + FP}$$
(11)

$$P_{\rm ca} = \frac{\rm TP}{\rm TP + FN} \tag{12}$$

式中: TP 表示是实际值和预测值均是异常绝缘子的 个数; FP 表示预测值是异常绝缘子,实际值却不是的 个数; FN 表示是实际值是异常绝缘子,预测值却不 是的个数。

为进一步衡量改进模型的优劣,这里采用平均检测精度(mean Average Precision, mAP),其中 AP 等价于召回率和准确率形成曲线与横轴包围的几何图形的面积,对所有类别的 AP 求平均值即可得到 mAP。

### 3.2 不同方法的对比研究

基于样本数据,开展 BP、Faster R-CNN 以及本 文方法的精确度和效率对比研究,不同方法的实验结 果统计见表 3。Faster R-CNN 和本文方法在 Precision 方面均明显优于 BP 方法,本文方法的 Recall 最高, mAP 也最高,相对于 BP 提高了近 10%,这说明经过 改进的 Faster R-CNN 对于小目标的特征提取具有明 显的优势。本文方法通过压缩激励结果,减少了数据 量的计算,所以相对于其他方法,有更高的效率。

表3 不同方法的实验结果统计

Table 3 Statistics of experimental results by different methods

| Name         | Precision | Recall | mAP   | Time/s |
|--------------|-----------|--------|-------|--------|
| BP           | 93.5%     | 90.4%  | 80.3% | 2.3    |
| Faster R-CNN | 98.7%     | 95.3%  | 88.7% | 1.2    |
| BFEM         | 99.2%     | 97.6%  | 90.2% | 0.9    |

绘制其准确率-召回率关系曲线,如图4所示,可 更加形象直观地反映出本文方法对绝缘子异常特征 的提取优势,因为另外两种方法的曲线均被完整的覆 盖,说明本文方法改进效果明显。



(a) Type V



图 4 准确率-召回率关系曲线

Fig.4 Relation curves of precision and recall

### 3.3 不同类型绝缘子对比研究

常见绝缘子排列有单 I 型、双 I 型以及 V 型。本 文开展这3类绝缘子的红外图像研究,比较不同排列 方式的诊断准确率,如图5所示。根据电力标准DL/T 664-2008<sup>[19]</sup>,图(b)和图(c)绝缘子端部明显发热,属于 异常情况。



(c) Type single I

(b) Type double I 图 5 不同类型绝缘子的红外图像

Fig.5 Infrared image of different types of insulators

不同类型绝缘子的异常诊断准确率见表 4,准确 率均较高,均在90%以上;I型和V型绝缘子的准确 率明显优于双 I 型绝缘子, 这是因为双 I 型绝缘子会 出现两排绝缘子重叠的情况,对红外图像的研究造成 一定的影响,为此无人机对于该种类型绝缘子的线路 需开展多种角度的拍摄。

表4 绝缘子异常诊断的准确率

| Table 4        | Accuracy of insulator anomaly diagnosis |                 |          |  |
|----------------|-----------------------------------------|-----------------|----------|--|
| Insulator type | Abnormal total                          | Detected number | Accuracy |  |
| Single I       | 62                                      | 61              | 98.4%    |  |
| Double I       | 47                                      | 44              | 93.6%    |  |
| V              | 31                                      | 31              | 100.0%   |  |

结论 4

本文提出一种改进的 Faster R-CNN 方法,引入激

励压缩环节,搭建训练模型,完成绝缘子红外图像的 异常诊断,并成功应用于电力现场运维。本文方法可 高效并精准地识别出绝缘子的异常缺陷, mAP 达到 90.2%。研究结果可为输电线路绝缘子缺陷识别研究 提供一定的参考。

#### 参考文献:

[1] 陈俊佑, 金立军, 段绍辉, 等. 基于 Hu 不变矩的红外图像电力设备识 别[J]. 机电工程, 2013, 30(1): 5-8.

CHEN Junyou, JIN Lijun, DUAN Shaohui, et al. Power equipment identification in infrared image based on Hu invariant moments[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 5-8.

[2] 邹辉, 黄福珍. 基于改进 Fast-Match 算法的电力设备红外图像多目标

定位[J]. 中国电机工程学报, 2017, 37(2): 591-598.

ZOU Hui, HU Fuzhen. Multi-target localization for infrared images of electrical equipment based on improved fast-match algorithm[J]. *Proceedings of the CSEE*, 2017, **37**(2): 591-598.

[3] 魏秀深. 解析深度学习:卷积神经网络原理与视觉实践[M]. 北京:电子工业出版社, 2018.

WEI Xiushen. Analytic Deep Learning: Convolutional Neural Network Theory And Visual Practice[M]. Beijing: Electronic Industry Press, 2018.

[4] 罗舜. 电力变压器套管将军帽发热故障的红外诊断分析[J]. 变压器, 2018, 55(1): 50-53.

LUO Sun. Infrared diagnosis analysis of power transformer bushing coupler heating[J]. *Transformer*, 2018, **55**(1): 50-53.

[5] 张杰,付泉泳,袁野.变压器局部放电带电检测技术应用研究[J].变压器,2018,55(8):66-71.

ZHANG Jie, FU Quanyong, YUAN Ye. Application research of electric detection technology of partial discharge for transformer[J]. *Transformer*, 2018, **55**(8): 66-71.

- [6] 梁天明,袁焯锋,石延辉.高压交流滤波电容器局部过热诱因分析及预防[J]. 电力电容器与无功补偿, 2015, 36(6): 49-53.
  LIANG Tianming, YUAN Daofeng, SHI Yanhui. Cause analysis and preventions on local overheating of high voltage ac filter capacitor[J]. Power Capacitor & Reactive Power Compensation, 2015, 36(6): 49-53.
- [7] 潘臻,安立.一起 35 kV 并联电容器组事故爆炸原因分析[J]. 电力电容器与无功补偿, 2015, 36(3): 17-20.
  PAN Zhen, AN Li. Analysis of 35 kV shunt capacitor banks explosion accident[J]. Power Capacitor & Reactive Power Compensation, 2015, 36(3): 17-20.
- [8] 黄斌,李昊,徐姗姗,等.一起35kV并联电容器组爆炸原因分析及防范措施[J]. 电力电容器与无功补偿, 2018, 39(1): 23-27.
  HUANG Bin, LI Hao, XU Sansan, et al. Reason analysis and precautionary measures for a 35kv shunt capacitor bank explosion[J]. *Power Capacitor & Reactive Power Compensation*, 2018, 39(1): 23-27.
- [9] 商俊平,李储欣,陈亮.基于视觉的绝缘子定位与自爆缺陷检测[J].
  电子测量与仪器学报, 2017, 31(6): 844-849.
  SHANG Junping, LI Chuxin, CHEN Liang. Location and detectionfor self-explode insulator based on vision[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 844-849.
- [10] 沈新平,彭刚,袁志强. 基于霍夫变换和 RANSAC 算法的绝缘子定 位方法[J]. 电子测量技术, 2017, 40(6): 132-137.
   SHEN Xinping, PENG Gang, YUAN Zhiqiang. Insulator location method based on hough transformation and RANSAC algorithm[J]. *Electronic Measurement Technology*, 2017, 40(6): 132-137.
- [11] 李军锋, 王钦若, 李敏. 结合深度学习和随机森林的电力设备图像识

别[J]. 高电压技术, 2017, 43(11): 3705-3711.

LI Junfeng, WANG Qinruo, LI Min, et al. Electric Equipment Image Recognition Based on Deep Learning and Random Forest[J]. *High Voltage Engineering*, 2017, **43**(11): 3705-3711.

[12] 侯春萍,章衡光,张巍,等. 输电线路绝缘子自爆缺陷识别方法[J].
 电力系统及其自动化学报, 2019, 31(6): 1-6.

HOU Chunping, ZHANG Hengguang, ZHANG Wei, et al. Recognition method for faults of insulators on transmission lines[C]//*Proceedings of the CSU-EPSA*, 2019, **31**(6): 1-6.

[13] 左川.基于图像识别的输电线路绝缘子检测方法研究[D].北京:华 北电力大学,2019.

ZUO Chuang. Research on detection method of transmission line insulator based on image recognition[D]. Beijing: North China Electric Power University, 2019.

[14] 杨光俊.卷积神经网络在电力设备红外图像识别中的应用研究[D].广州:华南理工大学, 2019.

YANG Guangjun. Research on the application of convolutional neural network in infrared image recognition of power equipment[D]. Guangzhou: South CHINA University of Technology, 2019.

- [15] 周可慧, 廖志伟, 肖异瑶, 等. 基于改进 CNN 的电力设备红外图像 分类模型构建研究[J]. 红外技术, 2019, 41(11): 1033-1038. ZHOU Kehui, LIAO Zhiwei, XIAO Yiyao, et al. Construction of infrared image classification model for power equipments based on improved CNN[J]. *Infrared Technology*, 2019, 41(11): 1033-1038.
- [16] 许必宵.基于多尺度特征融合与上下文分析的目标检测技术研究[D].南京:南京邮电大学,2019.

XU Bixiao. Research on object detection technology based on multi-scale feature fusion and context analysis[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019.

[17] 张丹丹. 基于航拍图像的绝缘子自爆位置的检测[D]. 成都: 西华大学, 2018.

ZHANG Dandan. Detection of self-exploding position of insulator based on aerial image[D]. Chengdu: Xihua University, 2018.

[18] 王梦. 基于绝缘子图像的缺陷检测方法研究[D]. 武汉: 华中科技大学, 2019.

WANG Meng. A thesis submitted in partial fulfillment of the requirements[D]. Wuhan: Huazhong University of Science & Technology, 2019.

[19] 国家能源局.带电设备红外诊断应用规范: DL/T 664-2008[S].北京: 中国标准出版社, 2008.

National Energy Administration. Application rules of infrared diagnosis for live electrical equipment: DL/T 664-2008[S]. Beijing: China Electric Power Press, 2008.